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Abstract Fast event detection is important in wireless sensor and actor networks
(WSANs) since actors can perform appropriate actions which sensor nodes are not
capable to do. While WSANs inherits the typical constrains of WSNs such as energy
and computation limitations of sensor nodes. In this paper, we propose a fast event
detecting algorithm named RENDEZVOUS to accelerate the actor’s event detecting
process while keep the energy consumption of sensor nodes as minimum. When design
RENDEZVOUS, we first study the mobility control of a actor to help the actor move
around close to a event by using Reinforcement Learning techniques with collected
sensory data. We then design a scheme to search nearby actors from the event side
inspired by a searching behavior of desert ants. By both perform search actions from
sensor side and actor side, the proposed algorithm can achieve fast event detecting
with neglect-able additional energy cost on sensors side. Extensive simulation results
demonstrate the efficiency of RENDEZVOUS.
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1 Introduction

Recent advance in low-power wireless communications and micro-electronics tech-
nology have witnessed a rapid penetration of wireless networks [1–6] in our daily life.
For a large-scale wireless sensor network, efficiently monitoring environments and
processing sensory data is necessary for conserving both lifetime and energy of the
network [7]. Wireless sensor and actor networks (WSANs) successfully accomplishes
this requirement to collect, process data from sensors and perform appropriate actions
in the network [8,9]. In WSANs, sensors are low-cost and low-power and are deployed
throughout a field to sense environments, while actors are powerful and resourceful
and are deployed much less than the number of the sensors. The actors collect and
process data reported by the sensors and perform actions according to situations when
the sensors detect events in the monitored field. In general, the application scenarios
in WSANs can be categorized basically into two types: complement of existing sen-
sor networks and new application paradigms. The first category includes application
scenarios where actors are employed for complementing/enhancing traditional sensor
networks. The other category includes application scenarios where actors are employed
in a new way such that actors react to events and work for “mission” accomplishment
in event areas. For example, when a disaster happens (e.g., earthquake) and some
people are missing, sensors find locations of victims and accordingly actors guide a
rescue team to the victims along safe routes [10]. Also, WSANs could deployed at
mountain area to monitor forest for wildfire. If a fire is detected by a sensor node, an
actor can quickly go to the event and perform fire extinction. In this paper, we focus
on the new application paradigms and assume an action area of actors coincides with
an event area or is very close to the event area.

In literature, actors always walk randomly around the network before they detect
events from sensory data. Such kind of movement may cause not only data delivery
delay but also energy consumption on sensors if the location of the actors is far from
event areas which results in consuming enormous amounts of energy over the network.
Also, if actors take quite long time to migrate to action areas due to the long distance
between the action areas and the location of the actors, such a waste of time could
inflict considerable damage on mission-critical applications. An intuitive solution is
to let sensors periodically report sensory data so that actors can arrive at event areas
just on time when events occur. However, it might cause prohibitive network energy
and bandwidth consumption. Such problems can be solved by elaborating the actor’s
mobility pattern which makes actors move close to areas before events actually occur.
Hence, our objective is to design an effective and efficient algorithm to fast detect the
event by a actor, especially in case of emergent situations, while saving energy on
sensors and time for the actor to migrate after events.
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In this paper, we propose an innovative fast event detecting scheme named REN-
DEZVOUS which elegantly integrate the detecting process from both actor side and
sensor side. The design of RENDEZVOUS are based on two parts. We first design a
scheme to control actor’s mobility which can formulate actor’s movement around the
event area by using Reinforcement Learning Techniques. We then design the search-
ing algorithm from sensor side to actively find the actor near the event. Our searching
scheme is inspired by a desert ant searching it’s nest in nature scenario. When the
actor ”meets” the searching query, it can directly go to the event area without calcu-
lating the rote path by collecting the sensory data from sensors. Extensive simulation
demonstrate the efficacy of RENDEZVOUS.

The remainder of this paper is organized as follows. In Sect. 2, we present related
work and the network model considered throughout the paper. In Sect. 3, we design the
actor’s mobility control and give the preliminary result. We design searching algorithm
of sensor side in Sect. 4. The simulation results of RENDEZVOUS are given in Sect. 5,
followed by the conclusion in Sect. 6.

2 Related work and network model

2.1 Related work

Research issues on WSANs have been widely addressed by many articles recently
[8–11]. Selvaradjou et al. [11] formulate the problem of optimal assignment of mobile
actors in WSANs as Mixed Integer Non Linear Program to conserve the energy needed
for actor mobility but otherwise fulfill the deadline and resource constraints of events.
Akyildiz et al. [8] introduce lots of open research challenges for sensor–actor and actor–
actor coordination and communication problems in WSANs. Melodia et al. [10] handle
the coordination problem in WSANs and propose a location management scheme to
localize actors with minimal energy expenditure for sensors and design algorithms to
deal with modeling actors’ mobility for optimal task accomplishment. Ota et al. [12]
propose ORACLE to make actors predict events before sensors detection and migrate
to the areas where the event may occur. Dong et al. [13,14] propose HERVEST to
collect data with an application-oriented Mobile Actor (MA) based on the uncertainty
of sensory data provided by all n-hop neighbor nodes. Martirosyan et al. [15] present
the performance evaluation of an algorithm for preserving temporal relationships of
events in wireless sensor actor networks (WSANs). The goal of the proposed event
ordering algorithm for WSANs is to reduce the overhead in terms of energy dissipation
and delay. However, those papers only consider the actors’ motion while less paying
attention on the sensor side. To the best of our knowledge, this is the first work to
address the fast event detecting problem by elegantly integrate the actor’s mobility
control and sensor’s searching procedure.

2.2 Network model

A typical WSAN is composed of a large number of sensors and actors in the network
area. In a certain field, the actor moves around the network from the beginning of
surveillance and collects sensory data from every sensor encountered. On the other
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Fig. 1 The network model of WSANs

hand, the sensors are densely deployed on a sensing field and monitor environmental
phenomenon and periodically store sensory data on themselves. In the deployment
stage, the sensors location is known by the actors. Each sensor’s communication
range is very limited and the sensors can communicate only with their neighbors or
actors inside their communication range. A sensor can also transmit data directly to
their neighbor or the actor. It has a limited memory to store information with battery
powered. When an event happen, the sensor detected the event and actor will go to the
event area to perform some missions. Figure 1 shows the network mode of a WSAN
in our paper. An event (fire) is detected by the sensor node around it. Then the actor
(Firefighting robot)’s mission is to find the event and to put out the fire.

3 RENDEZVOUS: actor mobility control scheme

3.1 Definition of direction

It is important to effectively select the direction of sensors to be visited since unnec-
essary visiting results in consuming both energy on sensors and time for the actor
to move. Thus, we define a direction as one of neighboring nodes where the actor
migrates at the next time slot. The actor selects one node based on sensory data of
each neighbor as criteria to make a decision. For the actor to decide the direction with-
out finding specific sensors, we define a feature of each sensor, called the propensity
of a sensor, to show the sensor’s surrounding information by involving its neighboring
nodes. The propensity quantifies information produced by a sensor and its neighbors
and shows how diverse data the information includes. For example, if sensors observe
temperature of an environment, the propensity of a sensor is low when the sensor and
its neighbors all produce the similar temperature values.
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For calculating the propensity on each sensor, when an actor moves into a commu-
nication range with sensors, each sensor in the range will send its own sensory data to
the actor then the propensity will be calculated on the actor side with all the sensory
data.The propensity is recalculated when new data comes in another period of time in
order to keep temporal correlation among sensory data.

The propensity is computed using entropy as follows. Let X be the random variable
representing a certain type of sensory data (e.g., temperature) from sensor i and its
neighbors. For the sake of computation, we discretize the continuous sensory data
values into Q disjoint intervals. If we have observed the sensors for N time slots in
a period of time �T , the time series of the sensory data can be denoted by Di =
(d0, d1, . . . , dN−1) where dt ∈ [0, Q − 1], 0 ≤ i ≤ N − 1 is the sensory data in time
slot t . Assume each of these Q data values appeared mv times in Di , 0 ≤ v ≤ Q − 1.
Thus, the probability of the data value on the nodes being equal to particular value v

can be computed as mv

N . Therefore, the entropy of X which is denoted as the propensity
and the propensity of node i at time t can be described as

propensi tyi (t) = H(X) = −
Q−1∑

v= 0

mv

N
log

mv

N
(1)

3.2 Reinforcement learning in Markov decision processes

We design actor mobility control using reinforcement learning in MDPs which is
a well-known mathematical framework to dynamically formulate optimization prob-
lems of stochastic systems such as a queuing model and an inventory model. The MDP
also has been widely adopted for sensor network research [16,17]. A ferry’s mobil-
ity control framework in mobile ad hoc networks is designed based on an extended
MDP called Partially Observable MDP (POMDP) [17], which aims for a data ferry to
encounter as many as randomly moving sensors by controlling the ferry’s motion using
the POMDP. Our research is inspired by this research but we apply the MDP instead
of the POMDP since the actor can directly observe the current state by communication
between the actor and deployed sensor nodes.

The MDP is represented by a four-tuple as shown in Table 1. The main objective is
to find a policy π for the actor to migrate to next direction (action) under the current
state. π is a function specifying the action to be selected when the current state is s.
Whenever the actor selects an action and then a state is changed, the actor obtains
a reward r(s, a) based on given state s and action a. We define evaluation function
f (Xt ) for the actor to evaluate the current state where Xt is some sensory data collected
from nodes within the actor’s communication range at current time slot t . The actor
compares the output of f (Xt ) to the output of f (Xt−1) calculated at previous time
slot t − 1, and then evaluates current state s. If f (Xt ) ≥ f (Xt−1), s is set as Increase,
otherwise s = decrease. We assume the evaluation function depends on applications
such that what kind of events is targeted to be detected in the monitoring field. However,
the evaluation function should be designed consistently in principle with rewarding
process. Briefly, the greater the output of the evaluation function, the better the current
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Table 1 A four-tuple
(S, A, P(·, ·), r(·, ·)) in the
MDP

S A set of state st denotes an increase or a decrease in the
output of evaluation function f (Xt ) to the previous
one f (Xt−1), s.t. S := {increase, decrease}

A A set of actions and action at denotes one of
neighboring sensors to migrate at current time step t .
Based on the propensity of the neighboring sensors, A
includes three sensors whose propensity is the highest,
medium, and the lowest in all neighbors respectively
s.t. A := { jh , jm , jl }

P(·, ·) The state transition function represented by
Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) which is
the probability of state s′ at next time step t + 1 if the
actor chooses action a in state s at time step t

r(·, ·) The immediate reward represented by r(s, a) which is
the reward the actor obtains when the actor takes
action a after that it observes state s. We set
r(s, a) = 1 when s = increase otherwise
r(s, a) = −1

state and the actor is rewarded. We will show an example of the evaluation function
used in our simulations in Sect. 3.3.

The goal is to choose a policy π that will maximize some cumulative functions of
the rewards which can be denoted by R(sT , aT ) where sT and aT are a history of states
and actions over a potentially long time window T respectively. That is formulated as:

π∗ = argmax E[R(sT , aT )|at = πt (st−1, at−1)] (2)

Although the actor’s mobility is modeled as Markovian such that it decides the
next sensor to migrate only depending on a current state, the actor does not know the
exact probabilities of the state transition. Then, the problem becomes a reinforcement
learning problem in the MDP [18]. A basic idea of the reinforcement learning is the
actor repeats trials of taking several actions with several states and figures out an
optimal policy from the experience. For effective learning of the actor, a state-value
function is defined to evaluate each state where the actor expects to be given rewards
afterwords:

V π (s) = Eπ (rt+1 + γ rt+1 + . . . |st = s)

= Eπ

(
inf∑

k=1

γ k−1rt+k+1

)
(3)

where γ is the discount rate (0 < γ ≤ 1) to evaluate a reward given in the future
which is discounted over time because a farther-future reward is less guaranteed since
the environment surrounding the actor may change over time and the actor may not
get a constant reward. In our scenario, the actor considers not only the impact of the
state, also the impact of an action selected when in the current state on the rewards.
For this purpose, an action-value function is defined to evaluate a pair of a state and
an action:
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Qπ (s, a) = Eπ (rt+1 + γ rt+1 + . . . |st = s, at = a)

= r(s, a)+ γ
∑

s′
V π (s′)Pa(s, s′) (4)

An optimal action-value function which satisfies the above action-value function for
every pair of a state and an action is described as:

Q∗(s, a) = max

[
r(s, a)+ γ

∑

s′
Q∗(s′, a)

]
(5)

The policy π(s) can be determined by the optimal action-value function Q∗, which
is a precise estimate of the action-value function Qπ . Then, the question is how to
update a Q-value during the actor’s experience in order to finally obtain the optimal-
value function Q∗. We apply a reinforcement learning technique called Q-learning to
the problem [18]. The basic idea of Q-learning can be described as follows. When
the actor takes an available action at in state st , Q-value Q(st , at ) is updated with
max Q(st+1, at+1) where the actor is expected to choose action at+1 which has the
maximum Q-value in state st+1. The Q-value converges to an optimal Q-value with
probability one if every action is chosen by the actor a number of times although
these actions are chosen in a random way. However, the actor is expected to acquire
as many as rewards before obtaining the optimal Q-value in order to get close to a
possible event area. Therefore, we apply the mostly used ε-greedy action-selection rule
which is, an action with a maximum Q-value at time step t is selected while the other
actions are randomly selected with small probability ε. This can utilize estimated Q-
values obtained from learning and at the same time efficiently seek better solutions for
future. Algorithm 1 summarizes procedures of our proposed method of actor mobility
control.

Algorithm 1 Mobility control
Initialize Q-value;
while Find a node which knows a location of a node detecting an event do

Broadcast a request of sending its historical sensory data to each node in the communication range of
the actor;
Using latest sensory data of each node, calculate evaluation function value f (Xt ) ;
Update current state st and get reward rt−1;
if Q-value is optimal then

Set action selection rule F as the optimal function Q∗;
else

Update Q-value;
Set action selection rule F as ε-greedy method;

end if
Calculate Entropy of each node based on the historical sensory data;
Update a set of actions A;
Select one of the nodes by method F ;
Shift a time step from t to t + 1;
Migrate to the selected node;

end while
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Table 2 Parameters and value
setting in the experiments

Parameter Value setting

Monitored area Small-sized: 80× 80 m2

Large-sized: 160× 160 m2

Transmission range of sensor and
actor

10 m

ε for ε-greedy action-selection rule 0.1

3.3 Preliminary result of RENDEZVOUS

We evaluate our proposed scheme by simulation experiments using Netlogo simulator
[19]. In our simulation, we consider one actor take in charge of a monitored area and
one event occur in the area. Two key performance metrics in the experiments distance
and range are evaluated.

– The distance is between the actor and a sensor node which first detects an event. It is
shorter when the actor is closer to an event area, which implies the actor successfully
predicts the event.

– The range indicates a moving range of the actor in the monitored area. It is ideal
for the range to be minimized while the shorter distance is maintained.

In our network settings, a number of sensors are randomly and densely deployed. The
event area is randomly chosen within the monitored area and environmental values are
set on each sensor, which are spatially-correlated to the event area and change every
unit of time. We randomly generate 50 network-examples for each network setting to
obtain the distance and the energy consumption respectively from the average over
those examples. We set the monitored area small-sized and large-sized: 80 × 80 m2

and 160×160 m2, respectively. A transmission range of sensors is 10 m in each set of
experiments. We set ε = 0.1 for the probability used in the ε-greedy action-selection
rule. Those parameters are summarized in Table 2.

In this simulation, we use the following evaluation function:

f (Xt ) = −
√

1

n

∑n

i=1
(th − xi )2 (6)

where n is the number of sensor nodes within the actor’s communication range, Xt =
(x1, x2, . . . , xn) is those nodes’ sensory data collected at time slot t , and th is a constant
and indicates the threshold value when a sensor node detects the event occurs.

We compare our method with a random walk model where the actor randomly move
around from sensor to sensor until the actor receives any event report from a sensor
node.

Figure 2 shows CDF of the distance from the event area to the actor in the small-
sized area by using the random model and ours, respectively. The actor using our
method more successfully move close to the event area than using the random walk
method while the actor observes the same range of the area by using either our method
or the random walk model as shown in Fig. 3. The results imply that, with our proposed

123



RENDEZVOUS: towards fast event detecting in wireless sensor and actor networks 1003

10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance (m)

C
D

F

Random
Ours

Fig. 2 CDF of the distance between the actor and a sensor node detecting the event in a small-sized area
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Fig. 3 CDF of the range where the actor migrates in a small-sized area

scheme, the actor effectively observes the monitored area and properly finds a clue in
search for the possible event from local observations.

According to Figs. 4 and 5, results for the large-sized area are similar to ones for the
small-sized area. However, the actor with our method can avoid the worst case when
it moves in the largest range of the area by using the random walk method as shown
in Fig. 5. This implies that the actor can minimize its motion when the monitored area
is large.

4 RENDEZVOUS: sensor seeks for actor

4.1 Algorithm overview

In the preliminary result, we find our proposed scheme outperform than the random
walk. While we also find an interesting observation that is when an actor performs
the event detection with Reinforcement Learning, the closer the actor to the event, the
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Fig. 4 CDF of the distance between the actor and a sensor node detecting the event in a large-sized area
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Fig. 5 CDF of the range where the actor migrates in a large-sized area

decision to next direction is more difficult to find. Sometimes the actor could take a long
time to find the event even it is very close to the event. This is because the difference
of the data becomes small around the event area. For example, if a fire happened, the
temperature around the fire could be very similar compare the place far from it. We
find the mobility control is like a macroscopic view of the event detection procedure.
Now we need a precise microscopic view of when an actor is close to the event.
One way to expand the information of an event is to broadcast the current sensor’s
information though the whole network [20]. However, due to the limited energy of
sensor node, the flooding algorithm generate prohibitive network traffic which results
the significant energy consumption and finally make a dead area hole of the sensor
network. To overcome these limitations, therefore to fast deliver the event to the actor
near around, we design the sensor part of RENDEZVOUS, to let both the actor and
sensor try to meet each other in an meeting area close to the event. RENDEZVOUS
is divided to two parts. The first part is Actor seeks for sensor. We use the Reinforce
Leaning algorithm to control the actor’s mobility and let the actor move towards the
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Fig. 6 An example of search pattern of a desert ant

event area which already described in the above section. The second part is sensor
seeks for actor. When actor comes to the region near the event, we try to set a ”space”
which can help to actor and sensor can meet.

The idea of seeking actor of RENDEZVOUS is inspired a nature algorithm [21]
from the mobility patten of a desert ant seeks for its nest. If an ant get lost, it will not
perform a random walk search of its nest but excuse a number of loops search with ever-
increasing way. The ant’s searching pattern can be summarized as following. When
the ant get lost, it tries to seek the nest with a believe that the nest is near its current
location. So the place near the center is most intensively be searched. This is perfectly
matching to the situation we discussed above, i.e. an event (ant) is near to an actor
(nest). Figure 6 shows an example of ant’s mobility of the searching algorithm. An ant
starts searching from the origin with a ever-increasing loop. At each loop searching,
the ant will first increase the distance from the origin. If the distance becomes larger
than the radius of the current loop, the ant will perform a searching back to the origin.

4.2 Algorithm design

In this section, we discuss the detail design of the searching scheme. Following the
essence of the ant search strategy, when a event happen, the sensor will detect event
and try to find the actor near this region. We define the sensor which detected the event
as a source node of this search. The search process include two directions. The first
one is called outboundsearch which means the search direction is from the source.
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We also define the inboundsearch with the search direction is towards the source.
RENDEZVOUS starts with a parameter h which denotes how many hops the algorithm
will conduct search in one step. The source will first randomly pick one neighbor node
to search the actor [21,23]. If the actor is not in the communication range, and the
current hop number is small than h, the algorithm is still in the outboundsearch phase.
The current node will pass the search query to its next neighbor whose hop number is
larger than the current node to source.

Algorithm 2 Ant search
Input: Node t received a message msg(direction, ant-msg, count-hop, T T L);
if t find a actor then

count-hop← 0;
Send a result message to the event node;

else
if msg.T T L ≥ 0 then

compute the distance between node nd and the origin node;
if msg.direction == outward then

if count-hop > 0 then
randomly select a neighbor nodes me which has farther distance from the origin;
create a massage msg′(direction, ant-msg, count-hop − 1, T T L − 1);
send msg′ to node me;
if count-hop == 1 then

Store the location of origin;
end if

end if
else

randomly select a neighbor nodes me which has nearer distance from the origin;
create a meeeage msg′(inward, ant-msg, 0, T T L − 1);
send msg′ to node me;

end if
if msg.direction == inward then

if t == msg.origin then
randomly select a neighbor nodes me;
create a massage msg′(direction, ant-msg, out-hop + 1, T T L − 1);
send msg′ to node me;

end if
else

randomly select a neighbor nodes me which has nearer distance from the origin;
create a meeeage msg′(inward, ant-msg, 0, T T L − 1);
send msg′ to node me;

end if
end if

end if

5 Performance evaluation

We use the same setting mentioned in Sect. 3.3, except for the range of the mon-
itored area and performance metrics. In this experiments, the monitored area is as
200×200 m2 and the actor’s transit speed is 6 kmph. We consider the following three
performance metrics:
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Fig. 7 Time consumption

– Time consumption: Time period until when the actor finds and migrate to a sensor
which detected an event.

– Cache: How many sensor nodes are used to store ant messages in the outbound
search phase when using RENDEZVOUS. It is represented by a ratio of the number
of nodes storing the message to the total number of nodes in the network.

– Energy consumption: Sensor energy consumed while searching the actor. It is cal-
culated using the link metric [22]: E = 2Eelec+Eampdα where α is the exponent of
the path loss propagation, Eamp is a constant, and Eelec is the energy for the trans-
ceiver circuitry to transmit or receive one bit. α = 2, Eamp = 10p, and Eelec = 50n
are used in this experiment.

First, we evaluate performance of our RENDEZVOUS in terms of time consump-
tion. We compare time consumption when the actor randomly walks until it finds an
event area (referred to as Random Walk hereafter) and when the actor purely uses the
mobility control based on Reinforcement Learning to find an event area (referred to as
Reinforcement Learning hereafter), to time consumption when the actor and sensors
use RENDEZVOUS.

Figure 7 shows the time consumption of actor migration with Random Walk, Rein-
forcement Learning, RENDEZVOUS, respectively in a different size of networks
including 700–1,000 nodes. As we can see the results, RENDEZVOUS always out-
performs other two methods. We conclude that the actor is able to find an event area
in less time by using our proposed algorithm.

Second, we evaluate the cache using RENDEZVOUS when changing the total
number of sensor nodes in the network. Figure 8 is showing that even introducing ant
mimic searching, the cache space is required as an acceptable level.

Lastly, we evaluate the energy consumption of the network by varying the num-
ber of sensor nodes. In addition to Reinforcement Learning, we also compare the
energy consumption when the network uses a broadcast strategy (hereafter referred to
as Broadcast) to notify the actor of a location of the event area. As shown in Fig. 9,

123



1008 M. Dong et al.

700 750 800 850 900 950 1000
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

Number of nodes in the network

R
at

io
 o

f 
no

de
s 

us
ed

 a
s 

ca
ch

e

RANDEZVOUS

Fig. 8 Cache when use RENDEZVOUS

700 750 800 850 900 950 1000
10

−2

10
−1

10
0

10
1

Number of nodes in the network

E
ne

rg
y 

co
ns

um
pt

io
n 

(W
*s

ec
)

Broadcast
Reinforcement Learning
RENDEZVOUS

Fig. 9 Energy consumption

the energy consumption of Broadcast is much larger than other two because all sensor
nodes in the network get involved to pass packets to inform the event location originat-
ing from a sensor node which detected the event. On the other hand, RENDEZVOUS
only requires to use a part of sensor nodes in the vicinity of the event area and the
energy consumption induced by RENDEZVOUS is neglectable. The results indicate
that the sensor energy can be saved while satisfying the actor to take less time to transit
to the event area.

We also evaluate the energy dispersion of the sensor nodes in each method. This
metric is one of the most important factors for sensor networks since unbalanced use of
energy results in emerging unobservable areas in the network and narrowing the net-
work coverage. Figure 10 shows the standard deviation (SD) of the energy consumption
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Fig. 10 CDF of the range where the actor migrates in a large-sized area

of each node in the whole network. As we can see, both Reinforcement Learning and
RENDEZVOUS effectively distribute energy in the network comparing to Broadcast.
Performance of Reinforcement Learning is slightly better than RENDEZVOUS. The
reason of that is some sensor nodes close to the event area consume more energy than
others because they get involved in delivering ant messages in RENDEZVOUS. Mean-
while, in Reinforcement Learning, each sensor node consumes energy more evenly
since the actor communicates with sensor nodes on a route path of its migration. How-
ever, according to the result shown in Fig. 9, the SD of the energy consumption in
RENDEZVOUS is still acceptable and leads us to conclude that RENDEZVOUS is
enough effective for energy dispersion in the network.

6 Conclusion and future work

In this paper, we have proposed RENDEZVOUS for fast event detecting in Wireless
Sensor and Actor Networks. Extensive simulation analysis demonstrated the perfor-
mance of our proposed scheme that achieving both time- and energy-effectiveness. For
our future work, we will consider multi-actors’ mobility control to deal with several
events occurring simultaneously regarding velocity of each actor, propensity of each
event, and mutual correlation of the both metrics.
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